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Simple Summary: Monitoring health status and disease outbreak among food animal herds is vitally
important to global food safety. Affected animals will experience production losses, and in uncurable
cases, operations will need to be modified or animals culled. Producers and veterinary personnel have
consistent interest in new diagnostic tools to provide rapid, accurate, and simple testing strategies
which do not undermine financial viability of the operation. This manuscript describes a new
approach for diagnosis of mastitis in dairy animals. The new method involves first analyzing raw
milk from animals by matrix-assisted laser desorption/ionization mass spectrometry and collecting
mass spectra. Then, peaks from the mass spectra are imported into a machine learning model, and
this software application discovers non-obvious patterns present in the data which coincide with
the mastitis condition. Finally, a separate set of milk samples is analyzed (scoring set) to evaluate
the diagnostic accuracy of the new model. Results suggest that certain machine learning models
offer value to the producer for diagnosis of subclinical mastitis in dairy cows. More generally, the
manuscript outlines use of the machine learning approach for diagnoses of animal disease, and we
prophesize that this strategy may be applicable to a wide array of animal health concerns.

Abstract: Novel strategies for diagnostic screening of animal and herd health are crucial to contain
disease outbreaks, maintain animal health, and maximize production efficiency. Mastitis is an inflam-
mation of the mammary gland in dairy cows, often resulting from infection from a microorganism.
Mastitis outbreaks result in loss of production, degradation of milk quality, and the need to isolate
and treat affected animals. In this work, we evaluate MALDI-TOF mass spectrometry as a diagnostic
for the culture-less screening of mastitis state from raw milk samples collected from regional dairies.
Since sample preparation requires only minutes per sample using microvolumes of reagents and no
cell culture, the technique is promising for rapid sample turnaround and low-cost diagnosis. Ma-
chine learning algorithms have been used to detect patterns embedded within MALDI-TOF spectra
using a training set of 226 raw milk samples. A separate scoring set of 100 raw milk samples has
been used to assess the specificity (spc) and sensitivity (sens) of the approach. Of machine learning
models tested, the gradient-boosted tree model gave global optimal results, with the Youden index
of J = 0.7, sens = 0.89, and spc = 0.81 achieved for the given set of conditions. Random forest models
also performed well, achieving J > 0.63, with sens = 0.83 and spc = 0.81. Naïve Bayes, generalized
linear, fast large-margin, and deep learning models failed to produce diagnostic results that were
as favorable. We conclude that MALDI-TOF MS combined with machine learning is an alternative
diagnostic tool for detection of high somatic cell count (SCC) and subclinical mastitis in dairy herds.

Keywords: diagnosis; mastitis; MALDI-TOF; somatic cell count; intramammary infection; machine
learning; random forest; gradient-boosted trees; deep learning; decision tree; dairy; bovine

1. Introduction

Mastitis is an inflammation of the mammary gland, usually caused by infection
by a microorganism. All female mammals are prone to the condition; however, in the
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dairy industry, mastitis has vast and far-reaching economic impacts on operations, since
milk appearance, quality, composition, and yield can all be affected. Clinical mastitis
is diagnosed when the body’s inflammatory response is extreme enough to change the
appearance of the milk, mammary gland, or cow. Raw milk will appear brown, black, or
red in color and/or exhibit extensive clotting making it unfit for sale and consumption. In
subclinical cases, changes in milk composition or appearance may not be easily detected,
but the milk may be high in somatic cell count (SCC), indicating presence of an infection. It
is generally accepted that an SCC of ≥200,000 cells/mL in milk indicates high likelihood
of infection, whether clinical signs are apparent or not [1]. Milk yield can be reduced by
5–10%—even at this early onset stage [2]. This may cost a dairy approx. 3 USD per day
in production losses alone from a single animal. Additional expenses for the treatment of
affected animals would be expected. Indeed, estimates of the economic costs of mastitis
cases in dairy cows range from USD 179 to USD 444 per animal [3,4]. Thus, early detection of
subclinical mastitis cases is of diagnostic interest to allow for rapid intervention to prevent
further development of the condition in individual animals and outbreaks within herds.

Current practices for diagnosis of clinical mastitis include basic techniques such as
udder and teat palpation and visualization of blood, clots, or flakes in the milk. More
advanced techniques are required for subclinical mastitis detection, including somatic cell
evaluation, plate-culture methods, pH, electrical conductivity, enzymatic activity, molecular
diagnostic tools, and biosensors [5]. One of the most common diagnostic methods for cow-
side subclinical mastitis detection is the California mastitis test (CMT). The CMT reagent
lyses leukocytes, causing the release of DNA that forms a gel. The amount of gelation
corresponds with the number of leukocytes within the milk sample. There are five results
for the CMT: negative (approximately 0–200,000 SCC), trace (150,000–500,000 SCC), +1
(400,000–1 million SCC), +2 (800,000–5 million SCC), and +3 (>5 million SCC) [6].

At present, the concentration of somatic cell counts per milliliter of milk is considered
the preferred metric for subclinical mastitis diagnosis since it is indicative of immune
response to infection. Frequently, the dichotomous decision threshold of 200,000 cells/mL
is used [7]. In this work, subclinical mastitis will be defined according to the following
SCC thresholds: subclinical mastitis: >200,000 cells/mL; healthy cows: <200,000 cells/mL.
However, there is no particularly high performing diagnostic test available to veterinar-
ians, as common tests do not offer the combination of sensitivity/specificity as well as
access, timeliness, and cost-effectiveness. For instance, Malek dos Reis et al. determined
the sensitivity and specificity of various SCC count thresholds for diagnosis of mastitis
in cows and found sensitivity values ranging from 0.37 to 0.74 when using SCC count
thresholds from 400,000→ 100,000 cells/mL, respectively [8]. Corresponding specificity
values were 0.81–0.50 over the same threshold range. In a separate work, Sargeant et al.
considered the use of both SCC counts and the in-field CMT for diagnosis of mastitis
state [9]. These authors found sensitivity values ranging from 0.65 to 0.98 when cell count
thresholds of 500,000→ 100,000 cells/mL were used as diagnostic thresholds. However,
specificity was low, ranging from 0.46 to 0.04 for the same SCC range. If the CMT diagnostic
was considered, sensitivity ranged from 0.046 to 0.66, with specificity corresponding to
0.97–0.6. Kandeel et al. also evaluated the CMT within a well-controlled veterinary hospital
setting [10]. These authors report sensitivity ranging between 0.05 and 0.45 and specificity
of 0.98–0.56 for cows not presenting clinical mastitis symptoms. For cows with clinical
mastitis, sensitivity ranged from 0.36 to 0.84, with specificity ranging from 0.82 to 0.38.
Here, the ranges for the variables vary based upon the cut-point threshold used for the
CMT test. These authors conclude that the CMT does not provide sufficient test sensitivity
to identify quarters and dairy cows with an IMI on admission to a veterinary hospital.
Front-line diagnostic methods relied upon by producers for detection of subclinical mastitis
are available but offer less than optimal sensitivity and specificity.

Considerable efforts have also gone into understanding the chemical changes which
occur within mastitic milk samples. Select reports have correlated small molecules such
as lactose with mastitis [11]. Other authors have reported that levels of immune-related
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proteins such as cathelicidins, IGK, CD59, and lactadherin, as well as protease inhibitors,
change significantly upon onset of mastitis [12]. Smolenski et al. report on a comprehen-
sive analysis of proteins in milk by 2D electrophoresis and liquid chromatography–mass
spectrometry (LC–MS) that uncovered the presence of over 2700 proteins, with approx.
15 attributed to host defense mechanisms [13]. Taken together, these works suggest that
the chemical composition of milk changes when mastitis occurs, and that, therefore, such
changes may effectively be used as a diagnostic tool for sensing outbreaks of mastitis.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-
TOF MS) is now a well-established tool within the research community for intact protein
mass analysis and microorganism identification [14,15]. The analytical benefits of MALDI-
TOF are rapid and facile sample preparation, and analysis of a wide variety of biomolecules
in molecularly intact form, with limited matrix interference. Thus, MALDI-TOF MS is
a promising platform for a variety of diagnostic tests if biomarkers are known or can
be identified. While some biomarkers have been identified (see previous paragraph),
the change in chemical composition of milk after the onset of mastitis is still not fully
characterized. Thus, additional analytes may provide valuable diagnostic information.

A significant challenge for the analyst is identifying analytes to use for dichotomous
diagnostics. One promising approach to assist in the identification of biomarkers and
improved diagnoses is use of machine learning technologies [16–22]. In machine learning,
patterns are detected within data sets using statistical inferences embedded within the data
to facilitate dichotomous decision making. In one such work, Ebrahimi et al. evaluated
various machine learning models (deep learning (DL), naïve Bayes, generalized linear
model, logistic regression, decision tree, gradient-boosted tree (GBT) and random forest)
using data from 364,249 milking instances in which milk volume, lactose concentration,
electrical conductivity (EC), protein concentration, peak flow, and milking time were
measured for each sample [17]. Using these parameters, the authors achieved a sensitivity
of >93% for diagnosis of the mastitis condition. However, diagnostic specificity was more
of a struggle, as only 1.2–40% was achieved for the various models.

Given the rich chemical information provided by a MALDI TOF spectrum and the
pattern-recognition ability of machine learning, the two techniques are a natural fit for
analytical diagnostics. An analyst would certainly struggle to diagnose mastitis from a
MALDI mass spectrum without prior knowledge of biomarkers indicating the condition.
However, if a set of sample spectra is used to train a machine learning algorithm, patterns
may be uncovered which lead to diagnostic accuracy.

In this study, the objective was to evaluate the performance of machine-learning-based
diagnostics utilizing a MALDI TOF MS data stream for the detection of high SCC, and,
consequently, subclinical mastitis state in dairy cows. Several machine learning models
were explored for performance, including decision trees, random forest, gradient-boosted
trees, naïve Bayes, generalized linear model, fast large-margin model, and deep learning.
Model performance was evaluated by receiver operating characteristic (ROC) curve analysis
and computation of model sensitivity (sens), specificity (spc), and the Youden index (J). The
approach tested should be applicable to periodic screening of herds for mastitis state.

2. Materials and Methods

An overview of the project workflow is depicted in Figure 1 below. First raw milk
was collected into 50 mL plastic vials. These samples were submitted for somatic cell
counting and chemical analysis at a partner laboratory. Then, samples were provided to
our laboratory for testing as samples of opportunity. Next, milk was mixed with MALDI
matrix and spotted on a plate, prior to mass spectral analysis. The resultant data were
formatted prior to data mining and model evaluation.
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2.1. Samples and Sample Preparation
2.1.1. Raw Milk Samples

Samples of raw milk were obtained from the Texas Dairy Herd Improvement Associa-
tion (DHIA) laboratory in Canyon, TX. These samples were originally collected at dairies
throughout Texas and submitted to the DHIA laboratory for analysis. After completing
their analysis, DHIA provided aliquots of the residual samples to our laboratory as samples
of opportunity for our research. The samples were obtained from individual cows as a
composite after the udder was completely milked out. Samples were collected as the cows
came into the milking parlor, which was randomly. However, some samples were selected
with knowledge that the cows were within a hospital pen (i.e., affected by clinical mastitis)
in an effort to acquire sufficient numbers of positive samples for analysis. The DHIA
laboratory conducted analysis of milk SCC, fat, protein, and lactose using a Milkoscan FT+
spectrometer (Foss) and provided these results in a spreadsheet file for use in this project.
DHIA uses a preservative (bronopol), which was added to all samples at 0.02%. The breed
of animal and location of dairies providing quarter samples were not revealed to protect
confidentiality. For the direct spotting method, N = 226 individual samples were used to
create the training data set for machine learning. Of these samples, N = 129 presented
with SCC < 200,000 and were deemed negative for mastitis (thus the diagnostic threshold
was SCC > 200 k cells/mL). The additional N = 97 had SCC > 200,000 and were deemed
mastitis positive. Either the ‘negative’ or the ‘positive’ identifier was added to the working
data spreadsheet for each sample.

An additional and separate set of N = 100 composite milk samples was obtained from
DHIA for use as the scoring data set. Of these samples, SCC results provided by DHIA
indicated mastitis in N = 53 of the composite samples, with the remaining 47 negative. These
samples were spotted and analyzed in an identical procedure to that used for the training
data set, but analysis was conducted on a different day. In addition, the scoring-data-set
composite milk samples were obtained from a different local dairy.

2.1.2. Sample Preparation and Spotting

Milk samples were applied to the MALDI plate via direct spotting. Briefly, 0.5 µL of
raw milk was deposited upon the MALDI target, and then 1 µL of solvent containing a
mixture of 1:1:1 acetonitrile, ethanol, and water with 3% trifluoroacetic acid (TFA) was
added. Finally, 1 µL of a saturated solution of α-cyano-4-hydroxycinnamic acid (CHCA)
matrix was mixed and the mixture allowed to dry prior to analysis.

2.2. MALDI-TOF-MS Analysis
MALDI-TOF Mass Spectra Acquisition

Data were acquired using a Shimadzu Axima Performance MALDI-TOF mass spec-
trometer. Laser power was set at 74 (arbitrary units) and 50 Hz repetition rate. An auto-
mated rastering pattern was used over 1000 profiles collected, with 2 pulses per profile. A
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mass range of 500–16,000 m/z in the linear TOF positive ion mode was employed. MALDI
TOF calibration was performed prior to analysis using a peptide mixture of known masses
between m/z = 757–3658 Da (LaserBioLabs, Valbonne, France) and horse heart cytochrome
C for m/z up to 12,351 Da. Peak centroid masses observed were within 0.5–1 Da of the
accepted mass for all calibrants.

2.3. Data Mining
2.3.1. Data Formatting

After acquisition of a MALDI spectrum, the Axima Performance software was used
to identify/pick peaks of centroid masses and record data to a comma delimited text file.
This step is crucial to provide an automated and reproducible method to identify peaks
and quantify signal strength. Next, the peak list files were formatted using a program
written in-house (LabView, National Instruments, Austin, TX, USA). The data mining
software requires consistent labels for m/z to find patterns within the data stream. Small
differences in m/z from run-to-run would be considered different labels by the data miner
if not corrected. Thus, this computer program begins at the user-defined lower limit of
m/z = 500 Da and queries the peak list file if a peak is present within ±1 Da. If found, the
integer m/z and peak intensity are written to a new text file. If no peak is present, the
integer m/z and a zero are passed to the file. The code then iterates to the original m/z, adds
2 Da to the mass, and repeats the process until the upper limit of m/z is reached (here upper
limit is m/z = 16,000 Da). This results in a text file with peak data from 500 to 16,000 Da,
with resolution of 2 Da. This is a necessary step to smooth the data effectively and present
it to the data mining software with the m/z value essentially as a categorical entry. The
mining software uses m/z only as a label for categorical data, such as gender, state of
residence, etc., when data mining is used for finding patterns in consumer data. After
formatting all files, mass spectral data were compiled in a spreadsheet and transposed.

2.3.2. Data Mining Models and Runs

All data mining was accomplished within RapidMiner Studio software (Version 9.10,
RapidMiner GmbH). Models used included decision tree, random forest, gradient- boosted
trees, naïve Bayes, generalized linear model, fast large-margin, and deep learning. For all
models, mastitis state (negative or positive) was identified as the ‘label’ within the software,
indicating that this was the value to be predicted for the scoring samples in a dichotomous
manner. Each model has its own variables which can be adjusted by the user in the software.
Within the Results section below, we describe efforts to vary these variables in more detail.
Upon each model run, the training data set was used to construct the model and the scoring
data set used to evaluate. Each data mining run used the identical experimental data. Data
mining results were saved to a spreadsheet file indicating mastitis state according to the
SCC results used as the reference, and the data mining model prediction. Then, diagnostic
sensitivity (sens) and specificity (spc), as well as the Youden index, were computed for the
100 scoring-set milk samples, using the typical approach [23].

3. Results
3.1. Machine Learning Models and Model Evaluation
3.1.1. Decision Trees

Decision trees represent a logical, intuitive, and highly visual means to report machine
learning data. The tree is simply a set of logical binary decisions based upon mass-to-charge
(m/z) values and intensity signals observed at each m/z within the MALDI mass spectrum.
An example decision tree obtained during experiments is shown below in Figure 2.

This tree begins by considering the m/z = 2934. If the signal observed was ≥62.82,
the sample was always positive for mastitis in the training set. Even if the signal were
below this threshold, the sample may still be positive. The remaining logical operators
throughout the tree classify the training set samples accordingly. In this training set tree,
only 19 samples deemed positive for mastitis using the SCC metric were grouped with
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the 129 negative results. When this decision tree is used to sort the separate 100 milk
scoring/evaluation samples, we obtain a result of 69% correct diagnosis, with sens = 0.679
and spc = 0.702. The decision tree model performance is reasonably good (though not the
global optimum obtained). However, the most significant advantage of using decision trees
is the ease with which analysts can identify potential biomarkers. Since the values within
the grey boxes correspond to m/z values for peaks observed in the mass spectrum, and the
model identified these markers as key features for sorting data into groups for ‘negative’
and ‘positive’, the substances generating these peaks appear to be relevant to physiology.
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Figure 2. Decision tree model generated by RapidMiner for the learning/training set. The numbers
within grey boxes represent m/z values from MALDI spectra—thus they are useful guides to identify
potential biomarkers indicative of mastitis. This decision tree represents the model, trained from
226 samples of known SCC. In the bottom right corner, 129/148 samples were correctly sorted as
negative. Conversely, 78/97 positive samples were correctly sorted during model building.

Interestingly, the peptide identified at 1898 Da is a fragment of serum amyloid A
protein (see supplementary data), which is known to be secreted during periods of inflam-
mation and has previously been found upregulated within milk affected by mastitis [24].
MALDI TOF/TOF experiments were also conducted to elucidate molecular structures
of key peaks identified in the decision tree, as shown in Figure 3. However, fragment
peaks have not been conclusively matched to peptides. The peak observed in the MALDI
spectrum at 1765 Da (labelled as 1764 in Figure 2 above) presents as being a most crucial
spectral element, as 116/128 negative results could be differentiated by this peak.

In RapidMiner, decision trees have user-adjustable parameters including splitting
criterion, tree maximal depth, confidence, and minimal gain for splitting. For criteria, the
accuracy, information gain, and gain ratio has been explored. Maximal tree depth was 2–20,
confidence was 0.01–0.5, and minimum gain ranged between 0.001 and 0.15. Sens ranged
from 0.62 to 0.943, with spc corresponding to 0.82–0.064 over the range tested. The Youden
index (J) is the maximal distance between a receiver operating characteristic (ROC) curve
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value and the diagonal line which describes diagnostic futility [25]. The Youden index can
be computed by:

J = {(sens + spc) − 1} (1)

The Youden index is often described as the optimal criterion value for balancing sens
and spc for dichotomous diagnostic decisions, though limitations exist on this statement
depending on the consequences of positive/negative results. For the decision tree analysis,
J = 0–0.509, indicating a wide range of diagnostic performance. The best performing model
(J = 0.509) was the ‘accuracy’ criterion, with >10 tree depth. For this set of conditions,
sens = 0.849, with spc = 0.659. The intuitive and visual nature of decision trees makes them
appealing; however, alternative machine learning approaches yielded higher performance
(see below).
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peak at 1765 Da is indicated as a key ion in the decision tree.

3.1.2. Random Forest

Random forest models create N decision trees based on the training data set and
then apply these trees to the scoring data set. A decision is reached for each sample by
simple voting, or a confidence-weighted voting process. Within RapidMiner, the random
forest operator has several user adjustable parameters, including number of trees, decision
criterion, maximal depth of trees, and voting strategy. Using the same training and scoring
data sets, we have varied these parameters in a systematic study of how they affect model
performance. Figure 4 reports a receiver operating characteristic curve (ROC) for the
random forest models explored. As observed, chosen parameters for the random forest
model affected performance dramatically. Poorest performance was observed when using
the gain-ratio model—particularly when large number of decision trees were employed. To
an extent, this may be counterintuitive as large number of decision trees may be perceived
to offer a modelling advantage. Optimal performance was observed when J = 0.6385 was
achieved, for a random forest model which was based on the information gain criterion,
confidence polling, maximal tree depth of five branches, and N = 601 individual decision
trees. For this model, sens = 0.83, spc = 0.81, and 82% of the scoring milk samples were
assigned to the correct category.
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3.1.3. Naïve Bayes Model

In RapidMiner, the naïve Bayes operator has no user adjustable parameters. Thus, only
one model-build and scoring evaluation was necessary. The naïve Bayes model successfully
predicted 64% of the scoring-set data correctly for mastitis state with sens = 0.868 and
spc = 0.383. As other models outperformed it, this model was not pursued further.

3.1.4. Generalized Linear Model

The generalized linear model was used with default parameters of AUTO for family
and solver, with regularization, standardize, and add intercept boxes checked. This model
predicted 68% of measurements correctly, with sens = 0.9245 and spc = 0.4043. If regular-
ization was not used but other parameters remained the same, 66% prediction accuracy
was achieved, with sens = 0.925 but spc = 0.36. When the generalized linear model was
employed with regularization, lambda search, and early stopping, the model predicted the
mastitis state of 69% of samples correctly, with sens = 0.868 and spc = 0.49. This performance
was the highest observed for the generalized linear model, but with a Youden index of
J = 0.285–0.370, this model option was not investigated further, since its performance was
far lower than that of other models, and no further improvements in performance could
be achieved.

3.1.5. Fast Large-Margin Model

The fast large-margin model was also evaluated. For this set of experiments, the
Ls SVM Dual, L2 SVM Primal, and L2 Logistic Regression solvers were used. Penalty
cost (C) was varied from 1 to 1000, and the termination criterion epsilon was varied
between 0.1 and 1000. Numerous conditions were used, resulting in prediction accuracy of
53–71%. Values for sens ranged from 0.58 to 1.0; however, corresponding spc values were
0.85–0. The Youden index was J = 0–0.436, so this option was also not investigated further,
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since its performance was considerably lower than that of other models, and no further
improvements in performance could be demonstrated.

3.1.6. Gradient-Boosted Trees

The gradient-boosted tree model has many adjustable parameters including number
of trees, maximal depth, minimum rows, number of bins, learning rate, sample rate, and
distribution. During investigative trials, the number of trees was varied between 71 and
741, with maximal depth from 4 to 10, minimum rows 5–10, bins 10–30, learning rate
0.01–0.75, split improvement 0.00005–0.001, and sample rate 0.5. Figure 5 reports the ROC
curve for the gradient-boosted model runs tested. The gradient-boosted model offers high
performance, as a trial using 241 trees, depth of 4, 10 rows, 30 bins, 0.05 learning rate, and
0.0001 split improvement yielded the maximal performance of any model tested during our
efforts. For this model build, sens = 0.89 was achieved, with spc = 0.81 and 85% diagnostic
accuracy. The Youden index was J = 0.7 for this global optimum trial. As observed in
Figure 5, a cluster of high-performing cases occurred when 241–341 trees were used in the
model. Increasing the number of trees to N = 541 or 741 did not increase performance.
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Figure 5. ROC curve for all gradient-boosted tree models explored. Models differ by adjusting
parameters within RapidMiner. Here, N corresponds to number of trees. See text for remaining
parameters adjusted. The gradient-boosted tree model performed the best of all models tested,
achieving sens = 0.89, with spc = 0.81 and 85% of the scoring milk samples assigned to the correct
diagnostic category for optimal model conditions. A project-maximum Youden index was achieved
for this model when J = 0.7.

3.1.7. Deep Learning Model

The final model considered in this study was deep learning and an ROC curve depict-
ing results is illustrated in Figure 6 below. This model features adjustable parameters for
activation, reproducible model, epochs, epsilon (learning rate), rho, among several others.
For exploration, the activation parameter was toggled between Tanh, Rectifier, Maxout,
and ExpRectifier within RapidMiner. Epochs ranged between 10 and the max allowed
(1.8e308). Eleven of the model runs used the ‘reproducible’ setting, while the remaining
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runs did not. It should be noted that replicate runs of the deep learning model with the
same input data may result in slightly different output results. The deep learning model
runs produced scoring-set results of between 54 and 70% diagnostic accuracy. Additional
figures of merit included sens ranging from 0.26 to 0.96 and spc ranging from 0.06 to 0.94.
The optimum model run was achieved when Rectifier was used with maximal allowed
epochs. However, this model run resulted in only sens = 0.68 and spc = 0.72, with J = 0.4, a
level of performance considerably lower than what was achieved for the random forest
and gradient-boosted models. The Deep Learning model was not pursued further, since
additional gains in performance could not be demonstrated.
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4. Discussion

In this study, the performance of machine-learning-based diagnostics utilizing a MALDI-
TOF MS data stream for the detection of subclinical mastitis, according to a predefined SCC
threshold (subclinical mastitis: >200,000 cells/mL; healthy cows: <200,000 cells/mL) was
assessed by receiver operating characteristic (ROC) curve analysis and computation of
model sensitivity (sens), specificity (spc), and the Youden index (J). Results indicate that the
random forest and gradient-boosted trees machine-learning models perform the best of all
approaches tested.

Results suggest the working hypotheses that MALDI-TOF MS coupled with machine
learning is a valuable tool for subclinical mastitis diagnosis. As observed in Table 1,
metrics for sens and spc exceed values reported previously in the literature for the SCC
diagnostic alone and the California mastitis test (CMT) test. Both the random forest and
gradient-boosted models developed within the current study have matched or exceeded the
diagnostic performance reported in Schepers et al. [26], a reference work which is largely
responsible for establishing the use of SCC as a diagnostic for mastitis in dairy herds.
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Table 1. Optimal sens, spc, and Jmax observed for several machine learning models and comparison
literature. Here, Jmax is maximal Youden index.

Model sens spc Jmax

Decision tree 0.85 0.66 0.51
Random forest 0.83 0.81 0.64

Naïve Bayes 0.87 0.38 0.25
Gen. linear 0.87 0.49 0.37

Fast large-margin 0.58 0.85 0.43
Grad. boosted trees 0.89 0.81 0.70

Deep learning 0.68 0.72 0.40
Comparison case SCC * [10] 0.59 0.72 0.31

Comparison case CMT ** [12] 0.27 0.85 0.12
Comparison case SCC [26] 0.74 0.90 0.64

* Somatic cell count (SCC) threshold of 200k/mL; study optimum reported. ** California mastitis test (CMT), test
threshold of +1, any infection.

Since MALDI-TOF MS measurements can be automated and require minimal sample
preparation, analytical turnaround times may be on the order of a few hours if an instrument
is available. In addition, since only microvolumes of reagents are required, analysis can be
inexpensive on a per sample basis—costing roughly 1 USD; however, this figure ignores
the substantial cost to acquire MALDI TOF.

While this study strongly suggests that coupling MALDI TOF to machine learning is a
promising diagnostic tool, the work is limited by several factors. First, samples used were
collected from regional dairies, and it is not clear if the training set would be applicable
to cows from other regions or climates in which husbandry practices and diet differ. It
is also not clear whether teat infections caused by bacteria different from those common
in West Texas would alter the MALDI TOF spectra so dramatically as to affect results. If
training-set data cannot be extrapolated to a variety of locations, the need will exist to
re-train the diagnostic algorithm, requiring significant investment of time and resources.
In addition, while running samples using MALDI TOF is inexpensive, acquisition of the
mass spectrometer is not. The device typically costs several hundred thousand US dollars,
making the technique inaccessible to many dairies and veterinary professionals.

Future directions of work could focus on the use of decision trees to further inves-
tigate/identify novel biomarkers of mastitis. In addition, a more thorough economic
cost/benefit analysis of using MALDI TOF MS for mastitis diagnoses could be carried out.
Towards this latter goal, assessing the applicability of training data sets to samples from a
variety of locations would begin to allow understanding of how generally applicable the
technique truly is. While initial results are promising, follow-up replication and expansion
of sample sets will produce further development of this field.

5. Conclusions

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-
TOF) data have been coupled with machine learning algorithms to develop an analytical
diagnostic for subclinical mastitis in dairy cows. As discussed above, the diagnostic
outperforms alternate existing options for testing and presents an exciting alternative for
future work. The approach described within this manuscript is, in principle, applicable to a
wide variety of veterinary diagnostic tests, and it is expected that machine learning coupled
with MALDI data streams will be applied to many diagnoses in future years. However,
additional effort must be focused on creating widely applicable training data set libraries
so that small differences in animal lifestyle do not confound successful implementation of
the diagnostic.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/vetsci10020101/s1, Supplementary Materials file which contains two
Excel spread-sheets with original data. References [27,28] are cited in the supplementary materials.
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